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• Anaphora: Abbreviated backward reference
in text.

Anaphor: A word that makes an anaphoric
reference.

• Pronouns as canonical anaphors.

Eugene O’Neill was an American playwright.  His 
plays involve characters who inhabit the fringes of 
society, engaging in depraved behavior, where they 
struggle to maintain their hopes and aspirations …

Anaphora and proforms

2
Example based on Wikipedia article on Eugene O’Neill, November 2007.

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Playwright
http://en.wikipedia.org/wiki/Society


Reference and antecedence
• Loose usage: “referring back in text”.

• Better terminology:

The anaphor and antecedent corefer.
3

Photo from Wikipedia article on Eugene O’Neill, November 2007.

referent
him
anaphor

Eugene O’Neill
antecedent



Constraining antecedents  1
• Pronouns must match antecedent in number

and gender.

• Antecedent must be “nearby” in text.
Hobbs 1978:  90% of antecedents are in same sentence as pronoun, 
8% are in previous sentence.

• Antecedent must be “in focus”.

?Ross put the wine on the tablei.  Iti was brown and round.

4



Constraining antecedents  2
• Syntactic contraints:

Rossi rewarded {himj|himselfi} for hisi,j? good work.
Nadiai said that shei,j? had done good work.
Shei said that shei,j? was pleased with Nadiak.
A (non-possessive) pronoun in an NP or PP that refers to the subject NP 
at the same level must be reflexive.  A pronoun subject cannot corefer
with a full NP at the same or lower level. 

Because hei,j? likes chocolate, Rossj bought a box of truffles.
The antecedent of a forward-referring pronoun must command it:  i.e., 
the antecedent’s immediately-dominating S node must non-
immediately dominate the pronoun.   Exercise: Draw this.

5



Anaphor resolution
• Anaphor resolution:  Determining the 

antecedent or referent of an anaphor.

• Antecedent might be another anaphor — a chain of 
coreferring expressions.

• Baseline algorithm:  Choose most-recent NP 
that matches in gender and number.

• Helpful tool:  Gender guesser for names.

6



Some antecedent problems
• Composite or implicit antecedents:

After Nadiai met Rossj, they{i,j} went swimming.
Ross gave each girli a crayonj.  They{i} used them{j} to draw pictures.

• Antecedents that are events expressed as verbs 
or whole sentences:

The St. Louis bank Page, Bacon & Co. suspended operations in 
February; it caused a panic in San Francisco.

7

Based on “Banks, businesses cashed in by 'mining the miners.'” by Dale Kasler, 
18 Jan 1998.  http://www.calgoldrush.com/part4/04business.html



Hobbs’s algorithm  1
• Traverse parse tree searching for candidate 

antecedents for pronouns.

• Choose first candidate NP that matches in 
gender and number 
(and maybe also in basic selectional preferences).

• Search order:

• Start at pronoun, work upwards, scanning S and NP 
nodes left-to-right, breadth-first.

• If necessary, traverse previous sentences, scanning S 
and NP nodes left-to-right, breadth-first.

8Hobbs, Jerry R. “Resolving pronoun references”, Lingua, 44, 1978, 311–338.



Hobbs’s algorithm 2

9

Adapted from: Hobbs 1978, figure 2.



Hobbs’s algorithm 3

10

Adapted from: Hobbs 1978, figure 2.



Hobbs’s algorithm 4

• Evaluation:

• In 300 examples, it found correct antecedent 88% 
without selectional restrictions, 92% with.

• But 168 had only one plausible antecedent.  
Performance on this subset was apparently 100%.

• On the other 132, scores were 73%, 82% with and 
without selectional restrictions, respectively.

11



Soon, Ng, and Lim 2001 1

• A machine-learning approach.

• Goal:  Find chains of coreferences in text 
(including definite references and anaphors).

• Basic idea:  

• Classify a pair of NPs in text as either coreferring or 
not.

• Classifier is learned from data: text marked with 
positive and negative examples of coreference.

• Features for classification are largely superficial, not 
syntactic.

12
Soon, Wee Meng; Ng, Hwee Tou; and Lim, Daniel Chung Yong.  “A machine learning approach to 
coreference resolution of noun phrases.”  Computational Linguistics, 27(4), 2001, 521–544.



Soon, Ng, and Lim 2001 2

• Method:

• Find “markables” in text (including nested ones, e.g. both 

'CEO of Anaconda' and 'Anaconda').

• For each one, work backwards through preceding 
markables until a coreferent is found
(or give up by running out of candidates).

• Yes/no decision on markable and candidate 
antecedents are made with decision-tree classifier 
induced from data by C5 algorithm.

13
Soon, Wee Meng; Ng, Hwee Tou; and Lim, Daniel Chung Yong.  “A machine learning approach to 
coreference resolution of noun phrases.”  Computational Linguistics, 27(4), 2001, 521–544.



Features for classification
• Distance apart (in sentences).

• Is either a pronoun?

• Is reference definite or demonstrative?

• String match or alias match?
Bart Simpson, Mr Simpson; IBM, International Business Machines.

• Number, gender agreement?

• Semantic class agreement (by first sense in WordNet)?
FEMALE, MALE, PERSON, ORGANIZATION. LOCATION, DATE, TIME, MONEY, PERCENT, 
OBJECT.

• Are both proper names?

• One is a proper name, and the reference is appositive?

14



15

String match?

Ref is pronoun?

Gender match?

Candidate is 
pronoun?

Same sentence? Number match?

Ref is appositive? Alias match?

✔

✘

YES NO

YES NO

YES NONO or 
UNKNOWN

YES

YES NO

✔

✘

NO
YES

Coreference classifier for MUC-6 data

YES NO

✘✔

NO

✘✔

YES

✔

Based on figure 2 of Soon et al., 2001.



Issues
• Accuracy depends on accuracy of pre-

processing:

• Finding markables (85%), determining semantic 
classes (???%).

• Not all features are used.

• Semantic classes too inaccurate?

• String match and alias are important features, 
but are sometimes misleading.

16



Raghunathan et al’s sieve 1
• Avoid ML methods that consider all features at 

once.

• Low-precision features may overwhelm high-
precision features.

• Avoid methods that consider only one 
candidate at a time.

• Might make selection too soon.

• Avoid supervised learning-based models.

• Use knowledge-based heuristics.

17
Raghunathan, Karthik; Lee, Heeyoung; Rangarajan, Sudarshan; Chambers, Nate; Surdeanu, Mihai; Jurafsky, Dan; Manning, Christopher.  “A Multi-Pass 
Sieve for Coreference Resolution.”  Proc, 2010 Conf on Empirical Methods in Natural Language Processing, Cambridge, MA, 492–501.



Raghunathan et al’s sieve 2
• “Sieve” is pipeline of rule-based modules.

• Considers all candidates simultaneously.

• Starts with high-precision features, working through 
to low-precision.

• Mentions may be clustered (or added to cluster)

even if not resolved.

• Label clusters with gender, number, etc, as it 
becomes known.

18



Raghunathan et al’s sieve 3
Modules (in order of decreasing precision):

• Exact match

• Appositives and similar, acronyms, demonyms.

• Strict head-matching (no non-matching stop words).

• Matches the Florida Supreme Court, the Florida court but not 
Yale University, Harvard University.

• Pronoun matches (lexicon for gender, animacy).

19



Raghunathan et al’s sieve 4
• Results: On MUC data, PRF = (.905, .680, .777).

• High precision, moderate recall (as expected by 
design).

• Most noun recall errors are due to lack of 
semantic knowledge.

• E.g., recognizing that settlements are agreements,
Gitano is the company.

20



• Some anaphors seem to need complex 
knowledge and inference to resolve.

The city councillors denied the demonstrators a permit
because they were communists.

The city councillors denied the demonstrators a permit 
because they feared violence. 

Adding world knowledge

21
Winograd, Terry.  Understanding Natural Language.  Academic Press, 1972.



Winograd Schema 1
• Resolve anaphors with different antecedents in 

minimally-different sentence pairs.

• World knowledge and inference are required.

The trophy would not fit in the brown suitcase because it 
was too big | small. What was too big?

• In practice: artificial problem, rarely seen in text; 
solution requires puzzle-solving as much as
language understanding.

22
Levesque, Hector. The Winograd schema challenge.  Proc, AAAI- Spring Symposium on Logical Formalizations of Commonsense Reasoning, 2011.



Winograd Schema 2
Nonetheless, Rahman and Ng: 

• Special resolver for Winograd sentences.

• 73% accuracy on test set of 282 pairs.
(Baseline 50%; conventional system ~55%.)

• From FrameNet, Google searches, and corpora: 
common narrative chains, connective relations, 
selectional restrictions.

• Cheap tricks or legitimate human-like method?

23
Rahman, Altaf and Ng, Vincent.  Resolving complex cases of definite pronouns: The Winograd schema challenge.  Proc, 2012 Joint Conference on 
Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju, 2012, 777–789.



It’s all about meaning

24

• Semantic interpretation or conceptual analysis:

• Process of determining the meaning of a sentence or 
other utterance.

• What is semantic?  What is meaning?

• Many theories and views.

• What is meaning to a computer?



Req. of a semantic theory  1
• A semantic theory should explain what 

“meanings” are and how they operate.
(An account of meaning that is adequate from one perspective
may be quite unsuitable from another)

• A semantic theory should account for …

• the meaning of words;

• the meaning of sentences;

• the relationship between the meaning of sentences 
and the meaning of the words in them.

25



• A semantic theory should account for 
properties that “meanings” can have:

• (non-syntactic) ambiguity

• synonymy

• vagueness

• intensional reference

• implication

• …

26

Req. of a semantic theory  2



• A semantic theory should provide a 
representation for meaning that permits 
semantic interpretation:

• Amenable to computations with respect to 
ambiguity, synonymy, etc.,

• with the application of world knowledge as 
necessary.

27

Req. of a semantic theory  3



Meaning as reference
• “The meaning of an utterance is an object or 

event in the world.”

• Problems:
• Meaning ≠ reference.

The morning star, the evening star.
• Non-existent things.

The first female president of the U.S., 
a married bachelor

• Syncategorematic words.
and, if, therefore, …

28



Meaning as intent
• “The meaning of an utterance is the intent of 

the speaker / writer.”

• Large developed theory of speech acts.

29



Meaning as behaviour
• “The meaning of an utterance is the listener’s 

or reader’s behavioural response to it.”

• Procedure executed or action taken as a result 
of hearing the sentence uttered.

• Problems:

• Action can be change of mental state; but how do we 
represent that?

• Too dependent on individual?

30



31

• What do we want to do with meanings?

• Knowledge and information extraction from 
text.

• Answering questions from text, knowledge base, 
or database.

• Translation, interpretation, learning, acquisition 
of knowledge, …

• NL → meaning and meaning → NL.

Computational semantics
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• Representation of knowledge (KR) is a central 
problem of AI.

• Symbolic representations (“vivid”):
• Logics, semantic nets and frames, executable 

procedures, …

• Distributed numeric weights (“opaque”): 
• Neural nets, vector-based methods, …

Semantic representations



KR as semantics 1

• Intuition: 

• For people, meaning is something ‘in the world’ 
(as we represent it in our heads).  

• Words and sentences refer to objects, events, 
actions, ideas, etc, that we can perceive, apprehend, 
or carry out.

• A computer’s ‘world’ is a database or 
knowledge base, and the actions that it can 
execute.

33



KR as semantics 2

• We can represent utterances in the same 
formalism as world knowledge.

• Thus, the meaning of a sentence could be:

• Declarative: A statement in a KR language that is to 
update or query a knowledge base.

• Procedural: A segment of code to be executed to 
cause an effect, to update or query a database or 
knowledge base, etc.

34



Knowledge bases 1

• Two-part knowledge base:

• TBOX:  Definitions of terminology and necessary 
facts, including the basic ontology (hierarchy of 
object types).

• ABOX: Contingent facts (possibly time-stamped as to 
when true).

35



Knowledge bases 2

• Three basic operations on KB:

• tell:  Assert a new fact to KB.

• retract:  Take statement out of KB (or mark as no 
longer true).

• ask:  Query whether statement is stored in KB, or for 
what value of variables the statement is true in KB.

• Argument is assertion in KR formalism.

36



KR as semantics 3

• Roles of KB:

• Repository of interpretation:  
Interpreted input may be added to KB.

• Underlies representation of discourse structure:
Referents of recent mentions.  

• Knowledge for interpretation:
Can be queried at any point in semantic analysis
for facts, plausibility, etc.

37



38

• Most (all?) symbolic KR formalisms are 
first-order or less:

• Equivalent to first-order predicate calculus (FOPC)*, 
with quantifiers ∀ and ∃.

• Much less expressive than natural language.

• Need (at least) higher-order intensional alethic 
deontic epistemic temporal (modal) logics for 
full NL expressiveness.

• However, …

Expressive power

*A.k.a. first-order logic (FOL).
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• A typical approach:

• Hierarchical classification of events and entities:  
taxonomy, ontology, is-a hierarchy.

• Each node describes either:

• a type of event or entity — in effect a potential 
word sense (≈ TBOX).

• an instance of a type (≈ ABOX).

• Descriptions in terms of attribute-value pairs.

Frames and networks

A node need not have a corres-
ponding word in any language.



• Inheritance of properties.

• Override more-general information by 
adding more-specific information.

Example

40

Thing

Event                         State                   Physical object

Animal

Bird (legs=2)

Human (legs=2)

HUMAN-7 (name=“Jill”,
job=Student)

Action (agent)

Arriving Breaking
(theme, 

instrument)

Mammal (legs=4)

A type of entity
(= word sense)

An instance
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HUMAN-7:

instance-of: Human

name: “Jill”

legs: 2

mother: HUMAN-23

father: HUMAN-111

job: Student

address: (unknown)

∃ HUMAN-7 (Human(HUMAN-7) ∧ name(HUMAN-7, “Jill”)

∧ legs(HUMAN-7, 2) ∧ mother(HUMAN-7, HUMAN-23)

∧ father(HUMAN-7, HUMAN-111)

∧ job(HUMAN-7, Student)

∧ address(HUMAN-7, (unknown)) )

OR

Example



42

• Constants represent instances denoted by 
names or definite references:

nadia, human-7, dog-16, wsptwe

• One-place predicates represent properties 
denoted by nouns and adjectives.

dog(dog-16), happy(dog-16)

• Two-place predicates represent relational 
attributes:

owner(dog-16, human-7)

First-order representation 1
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• As important as the structure of physical 
objects.

• Attributes are thematic roles:
• Agent: doer of the action.

• Patient/Theme: entity affected by the action.

• Instrument: entity used to do the action.

• Result: entity created.

• Adjunct or modifier attributes include:
• Time, Location, Manner.

The structure of events



Example
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Thing

Event                         State                   Physical object

Animal

Bird (legs=2)

Human (legs=2)

HUMAN-7 (name=“Jill”,
job=Student)

Action (agent)

Arriving Breaking
(theme, 

instrument)

Mammal (legs=4)

BREAK-22 (agent=HUMAN-7, theme=VASE-32, instrument=HAMMER-24)

An instance of an event with 
an agent, theme, and instrument



Example

45

∃ BREAK-22 (Breaking(BREAK-22)

∧ agent(BREAK-22, HUMAN-7)

∧ theme(BREAK-22, VASE-32)

∧ instrument(BREAK-22, HAMMER-24) )

OR

Breaking(BREAK-22, HUMAN-7, VASE-32, HAMMER-24)

OR

Positional specification of arguments

“Jill broke the vase 
with the hammer.”

BREAK-22:

instance-of: Breaking

agent: HUMAN-7

theme: VASE-32

instrument: HAMMER-24
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• n-place or (n+1)-place predicates to represent 
relationships denoted by verbs.

• sleep(nadia)

cuddle(nadia, dog-16)

give(nadia, dog-16, ross)

• sleep(sleep-23, nadia)

cuddle(cuddle-12,nadia, dog-16)

give(give-333, nadia, dog-16, ross)

• We can decompose things into conjunctions of 
one- or two-place predicates.

First-order representation 2
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• Interpreting NL sentences in first-order 
representations.

Nadia feeds Ross → 
feed(nadia,ross)

OR
∃e (feeding(e) ∧ agent(e,nadia)

∧ theme(e,ross))

OR (Jurafsky & Martin)

∃e (feeding(e) ∧ feeder(e,nadia)

∧ fed(e,ross))

First-order representation 3
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• Sentences with quantifiers:

{ All cows | Cows } eat ice-cream →

∀x(cow(x) ⇒ eats(x,ice-cream))

Every student feeds a weasel →

∀x(student(x) ⇒
∃y(weasel(y) ∧ (feeds(x,y))

∃y(weasel(y) ∧
∀x(student(x) ⇒ feeds(x,y))

First-order representation 4

Ambiguity!
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• Input:  Parse tree.

• Output:  Executable code to query database.

• If process fails, try a different parse.

• Basic method:  Pattern-matching rules:

• If P⊂ tree, insert f(P) in output.

Procedural semantics
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Example

PN     V   Prep  PN       Prep  PN
AA-57 flies to Boston from Chicago

connect(aa-57, chicago, boston)

NP

NP

PP

VP

S

NP

PP



Quantification

51

• System has four levels of rules: 
determiners, NPs, PPs on NPs, clauses.

• Rules for order of interpretation and for where 
result is placed cause NP quantifiers to apply to 
whole sentence.

Every → (∀x: R; P)

• Every flight from Boston to NY leaves Boston at 8:00.

(∀x1 / flight: connect(x1, Boston, NY); 
equal (dtime (x1, Boston), 800))
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Pros and cons
• Simple method.

• Fast, but very superficial.

• May be good in very limited domains.

• Need to characterize anticipated input fairly 
specifically; not portable.

• Rules may interact in complex ways.

• Can’t detect ambiguity.
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• Semantic grammars:

• Tailor grammar to specific domain.

• Integrate parsing and semantic analysis: 
parser builds semantic structure directly.

• Grammar rules take semantic class into account.

NP → City | Flight | Airline | …
Flight → Flight-code | Time flight to City | …
Time → morning | … | Number {a.m. | p.m.} | …

• More-specific rules (less portable).

Methods of interpretation  2
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• Compositional semantics

• Principle of compositionality:  

• The meaning of a syntactic constituent is a 
systematic function of the meaning of its parts.

• Philosophical and technical problems with 
compositionality:

• What counts as “systematic”?

• What about sense modulation (fast typist, fast road)?

• What about the role of the context of a utterance?

Methods of interpretation  3



55

• Rule-to-rule principle:

• Each syntactic rule has corresponding semantic rule.

• Work in parallel or lockstep to build parse tree and 
logical form simultaneously. 

• Implication for semantic representation:  
Representations must be combinable in various ways.

• Representations of Nadia and see must be combinable 
(in different ways) to give representations of both 
see Nadia and Nadia sees.

Compositionality 1
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• Implication for grammar: 

• Whenever there is a syntactic rule that combines two 
or more constituents to create a new one, …

• … there is a corresponding semantic rule that 
creates the semantic interpretation for the new 
constituent from the interpretations of its 
components …

• … by combination of one with the other.

• E.g., rule VP →V NP must specify how the semantics 
of the V and NP combine to give semantics of the VP.

Compositionality 2
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• Words: Each word’s entry in the lexicon has an 
associated semantic object from the KB or 
semantic representation.

• Notation: Use ‘prime’ on word or constituent to 
denote its associated semantic object:  
VP′, Nadia′, [Nadia sleeps]′.

Semantic objects
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• Regard one semantic object as a predicate, 
the other as its argument.

• Example: S → NP  VP   {Sem:  S′ = VP′(NP′)}

• VP′’s must be functions of one argument. 

• [Nadia sleeps]′ = sleeps′(Nadia′) = sleeps′(nadia)

• = ∃x(sleeping(x) ∧ sleeper(x,nadia))

• Hence sleeps′ is a function of one argument, 
a lambda abstraction:

λy(∃x(sleeping(x) ∧ sleeper(x,y)))

Combining semantic objects
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• [Nadia feeds a fish]′

= ∃f(fish(f) ∧ ∃x(feeding(x) 
∧ feeder(x,nadia) ∧ feedee(x,f)))

• NP → Det N   {Sem:  NP′ = Det′(N′)}

a′ = λPλQ(∃f(P(f) ∧ Q(f)))

fish′ = λa(fish(a)) 
[a fish]′ = λQ(∃f(fish(f) ∧ Q(f)))

Determiners & quantifiers 1

a fish behaves quite differently than Ross
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feeds′ = λRλz R(λy(∃x(feeding(x)
∧ feeder(x,z) ∧ feedee(x,y))))

[a fish]′ = λQ(∃f(fish(f) ∧ Q(f)))

[feeds a fish]′ = feeds′([a fish]′)

= λz(∃f(fish(f) ∧ ∃x(feeding(x)
∧ feeder(x,z) ∧ feedee(x,f)))

Determiners & quantifiers 2
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• [A fish feeds Ross]′

= ∃f(fish(f) ∧ ∃x(feeding(x) 
∧ feeder(x,f) ∧ feedee(x,ross)))

Determiners & quantifiers 3

a fish behaves same as when object of sentence



Quantifier scope ambiguity 1

Every man is a piece of the continent →

∀x(man(x) ⇒ ∃y(piece-of-continent(y) 
∧ be(x,y)))

∃y(piece-of-continent(y) ∧
∀x(man(x) ⇒ be(x,y)))

62

No man is an island, entire of itself; 
every man is a piece of the continent, a part of the main.

—John Donne, Meditation XVII, 1623

✘

✔



Quantifier scope ambiguity  2

Every person saw a fireball →

∀x(person(x) 
⇒ ∃y(fireball(y) ∧ (saw(x,y)))

∃y(fireball(y)
∧ ∀x(person(x) ⇒ saw(x,y)))

63

He was inside the building when the rear of the plant exploded. "Everybody saw a 
huge fireball, and everybody started running out," Bales said.   

—Associated Press, 21 Feb 2003

✘

✔



Quantifier scope ambiguity  3
• Syntax doesn’t help choose:  parse tree has the 

same structure in each case.

• Present rules will give wide-scope reading.
∀x(...(x) ⇒ ∃y(...(y) ∧ ...(x,y)))

• Need to make both choices available for separate 
disambiguation process.

64



Evaluating interpretations
• Do the semantic representations allow other 

processes to “do the right thing”?

• Inference, retrieval, question-answering, …

• “Learning by reading”

• Read 133 sentences from a high-school chemistry 
text and answer the exercises.

65

Rutu Mulkar, Jerry R. Hobbs, Eduard Hovy, Hans Chalupsky, and Chin-Yew Lin.  Learning by reading: 
Two experiments.  Proceedings of the 3rd International Workshop on Knowledge and Reasoning for 
Question Answering, Hyderabad, India, January 2007.
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Some knowledge from book:

H3O+ is the conjugate acid of H2O. 

Acids cause certain dyes to change color. 

Bases have a bitter taste and feel slippery. 

Soap is a base.

Exercises:

Does H3O+ cause certain dyes to change color?

Answer: yes

What taste does soap have?

Answer: bitter 

Soap feels how? 

Answer: slippery
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• Intro to computational linguistics.

• Grammars and parsing; features.

• Chart parsing.

• Statistical PP attachment.

• Part-of-speech tagging; statistical parsing.

• Semantics and semantic interpretation.

• Lexical semantics.

• Word sense disambiguation.

• Neural word representations.

• Anaphora and coreference.

Semantics

Syntax

What was in this course

68



Underlying themes
• Ambiguity is a pervasive problem.

• Algorithms for parsing, interpretation, 
ambiguity resolution.

• Supplementing linguistic knowledge with 
statistical knowledge from corpora.

• Importance of lexical information.

• Reliance on semantic representations.

69



What’s in CSC 401 / 2511
• Introduction to corpus-based linguistics.
• Text categorization, classification methods.
• N-gram models and smoothing.
• Entropy and information theory.
• (Hidden) Markov models.
• Statistical machine translation.
• Automatic speech recognition and synthesis.
• Information retrieval.
• Text summarization.

70
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